Balikesir (280 km south of Istanbul) is a province where there are many types of mineral and industrial raw materials, as well as natural stone reserves. The bentonite and kaolin formations in the province of Balikesir are in the Çağış area for bentonite and Düvertepe area for kaolin.
The widespread Balıkesir bentonite deposits in western Anatolia have economic potential. They are important raw materials for the paper and bleaching industries in Turkey. These numerous bentonite deposits are associated with Miocene volcanic-sedimentary rocks. The Çağış area has the most important Na- and Ca-bentonite deposits in Balıkesir district.

Acidic to intermediate volcanism became very active during Miocene in the Balıkesir region. Miocene volcano-sedimentary succession unconformably overlies the basement rocks.

The volcanic rocks are composed of rhyolite rhyodacite, dacite, andesite, and their pyroclastics. Geological, mineralogical and geochemical features of the bentonite deposits suggest in-situ alteration of these pyroclastics.

Basement rocks of the Balıkesir region are comprised of Paleozoic – Mesozoic metamorphic rocks, Upper Cretaceous (Maastrichtian) flysch series, and Upper Cretaceous ophiolitic mélangé.

The bentonite deposits in Balıkesir region are composed of abundant montmorillonite associated with feldspar, calcite, dolomite, quartz, opal-CT, minor to accessory illite, chlorite, and kaolinite.
The Düvertepe district (Balıkesir, western Anatolia, Turkey) located on the western end of the Simav Graben is the largest known fossil hydrothermal kaolin deposit in Turkey. There are many high sulfidation epithermal kaolin deposits in the Düvertepe district, with each situated in silicified zones as a consequence of hydrothermal alteration associated with fracture systems.

Kaolinization was formed as the result of acid sulfate geothermal waters by controlling N–S extension tectonic regime. Hydrothermal fluids at temperatures of 38-129 °C, which followed the fracture systems in the region. Thus kaolinization is common along fault zones and silica sinters are located above the kaolin zones as a mark outflow of geothermal waters.

The basement group consists of Paleozoic metamorphic rocks and Mesozoic complexes. Early–Middle Miocene volcanics include rhyolite-rhyodacite lavas, perlite, tuff and pumucite, with the largest kaolin reserves hosted within Early Miocene rhyolite-rhyodacite tuffs.

Kaolin formations have white, gray, greenish gray, pink and reddish pink colors. Two mineral facies were described in the region; (1) kaolinite–alunite–quartz and (2) alunite–opal-CT–quartz–halloysite. The total kaolin reserve in the region is approximately 20 million tones with current annual production of 400,000 tones/year.
The trip will depart by bus from the meeting venue with a one-way travel time of approximately 4 hours to reach the Balikesir region. Accommodations for an overnight stay and meals will be included as part of the field trip registration.

Articles on bentonite and kaolin deposits in Balikesir and surrounding region

Çoban, F. (2014). The mineralogy and geochemistry of Bigadiç (Balikesir) bentonite deposits and the mobility of major, trace and rare earth elements during bentonitization. Çukurova University Journal of the Faculty of Engineering and Architecture, 29(2), 55–68.

